This example is a simple demonstration how a nozzle can be programmed to pick and drop a surface mount component. The objective of this post is to demonstrate how a macro for controlling this can be programmed. This process involves positioning a nozzle over the SMD, opening the 3-way valve connect the nozzle to the vacuum pump and turning on and off the vacuum pump. The Macro editor is used to assemble the different steps which then can be exported into a macro or you can run in it. For more details about how the scheduler system please check out this link: https://www.htsresources.com/wpstuff/cad-design-and-slicing-tool/3-d-circuit-designer/
Author: Richard
Video targeting for pick and place applications
Using a camera makes it more convenient to select target areas for positioning a nozzle. The example demonstrates how the LabBot scheduler software can work with video targeting for pick and place applications. In order to use this, the image resolution (which will vary depending on the distance from the camera to the target and the camera focus) and the distance from the nozzle to the viewing area needs to be calculated. The image processing tool makes it possible to enter the values in order to calculate the target position which is displayed that can be send eventually to the LabBot scheduler macro. |
|



Part crusher and extruder for making parts using recycled plastic
Recycling plastics is an emerging and needed area that compliments 3-D printing. Another program cooking is to create a system for fabricating LabBots and other types of 3-D parts using recycled plastic. One of the ideas is to set up special configured 3-D printers with solutions for recycling plastics.
The idea is to pulverize plastic parts into small bits that can be melted and reformed into filaments that can be used for 3-D printing. We are working on two systems to do this. The first being the part shredder and the second the filament extruder. Hopefully soon we can update more about this technology and eventually integrate this into the LabBot ecosystem.


LabBot scheduler software for 3-D circuit printing
One of the developmental directions going on is to create a solution that integrates electronics into the part as its getting printed in 3-D. To do this, the LabBot is being adapted to work with 3 different types of nozzles: 1. pick and place vacuum aspirator, 2. conductive paste extruder and 3. FDM direct drive extruder. The LabBot scheduling software has already been designed and described here at https://www.htsresources.com/wpstuff/cad-design-and-slicing-tool/3-d-circuit-designer/. There is also a camera that is used for visualizing part positions.

Piezoelectric dispensing (inkjet) small amounts of powders
It is actually possible to dispense some types of powders using a piezoelectric dispenser. If the particles are small enough they can be aspirated into the piezoelectric nozzle (using a syringe pump), then the piezo actuator can drive the dispensers.

Inverted imaging to show inkjet spot morphology
Inverted microscopic imaging is a straightforward yet very useful tool to show how different types of spotting buffers affect spot morphology. From this point of view just using a brightfield imaging system like a microscope can clearly show the different types of polymorphs that can be shaped just by adjusting the sample liquid composition when being dispensed using a piezoelectric inkjet dispenser.

We have been developed various tools for developing piezoelectric dispensing applications on the LabBot 3D printer platform. Some of the tools are displayed on our inkjet page: https://www.htsresources.com/acoustic-dispensing-tools/. Also we have a general purposed microfluidic and programming tool that makes it possible to run piezoelectric (inkjet) dispensers which is documented at https://www.htsresources.com/labautobox_microfluidics/. Demonstrated is how to attach a piezoelectric nozzle on the system.

In addition to the microfluidics we also have been in working on using LabBot to do combined inverted imaging that works with the dispensers. So when the pipette is moving in the XYZ direction on the top, a camera at the bottom can move at the bottom in synchronization that can record the dispensing and visualize the polymorphs. While we use adjustable focusing cameras that work with RaspberryPi computers, it can also be possible to move the bed up and down to control for magnification or the camera can move and down using a servo driven 3D printed linear actuator.

Analog sensing for inkjet printing
Inkjet printing is great since it can be used with a variety of different materials. Therefore there are many opportunities to develop innovative applications.
We have also developed techniques that allow for very precise synchronization of the piezoelectric dispensing process with other devices such as cameras, light sensors, and illumination modules (ie., LEDs). This allows the possibility of detecting the droplet whether it is coming out of the nozzle or as it hits the substrate surface.

This can be used to characterize the sample as it is coming out of the dispenser. For example, say you wanted to dispense fluorescently labeled cells (ie., similar to a FACS cell sorter). Using this technique we can flash a LED for exciting the fluorescence and using a filter in front of the camera (or it could be a photodiode) and collect the signal at the same time as the flash which is both done at a precise time after the nozzle dispensers.
Like cell sorting, this can also be applied to doing chemical reactions. Data can be collected immediately after the dispensing so take pyro DNA sequencing for example, in this case, if a nucleotide is incorporated during the DNA synthesis process, light is released which can be measured. We can put 4 different smart dispensers on a system (A,T,G, and C) and read feedback as the nucleotides get incorporated.
PCR on a 3D printer
LabBot is essentially a 3D printer and this example demonstrates how to configure a system to run as a PCR machine. The motivation for developing this is that 3D printers can also be seen as platforms for developing laboratory automation. They can be used to make the parts for assembling systems and work on open source toolchains (mechanical, electrical, and software) processes which we build on.
That is what this shop is all about. Demonstrating how 3D printers can be used as lab automation platforms and creating educational tools to support people to use them for this purpose. Great healthcare access is about sustainability and these have both socioeconomic and environmental impacts (since the reactions can be performed consuming minimal plastic waste and 3D printers can be made in many different ways). Harnessing the potential of 3D printers as a healthcare tool can be constructive in improving the current situation.
This example demonstrates how to use a relatively reliable commonly used thermocycling PCR reaction using a Taqman probe. The system is like real-time PCR, because the tube-based reactions are monitored after so many cycles which can be user-defined.
Details are posted https://www.htsresources.com/wpstuff/pcr-with-taqman-probe-on-labbot-3d-printer/.
Portable thermocycler for Taqman probe based nucleic acid detection using PCR
Decentralized (like at home based) nucleic acid detection that uses parts from 3D printers has been described on this https://www.htsresources.com/wpstuff/thermocycler/ . Basically I thought it would be interesting to see if you can make a thermocycler using parts from a 3D printer extruder. Sure enough its possible and it looks like this thing:

It uses heaters and thermistors that also used by 3D printer extruders. It also comes with a pipetting system that can be washed a reused. Actually so can the PCR tubes that you do the reactions in. It takes around 4 hours to do 30 cycles but the block can hold up to 5 PCR tubes at once. The cool thing with this is that you could potentially run tests inexpensively.
The voltage divider circuit and PID controller were modified from 3D printer derived firmware too (Marlin). So it’s run using an Arduino shield which was custom-made.

New website!
Welcome to the new HTS Resources website. Hopefully it makes the products and services clearer!