Inverted microscopic imaging is a straightforward yet very useful tool to show how different types of spotting buffers affect spot morphology. From this point of view just using a brightfield imaging system like a microscope can clearly show the different types of polymorphs that can be shaped just by adjusting the sample liquid composition when being dispensed using a piezoelectric inkjet dispenser.

We have been developed various tools for developing piezoelectric dispensing applications on the LabBot 3D printer platform. Some of the tools are displayed on our inkjet page: https://www.htsresources.com/acoustic-dispensing-tools/. Also we have a general purposed microfluidic and programming tool that makes it possible to run piezoelectric (inkjet) dispensers which is documented at https://www.htsresources.com/labautobox_microfluidics/. Demonstrated is how to attach a piezoelectric nozzle on the system.

In addition to the microfluidics we also have been in working on using LabBot to do combined inverted imaging that works with the dispensers. So when the pipette is moving in the XYZ direction on the top, a camera at the bottom can move at the bottom in synchronization that can record the dispensing and visualize the polymorphs. While we use adjustable focusing cameras that work with RaspberryPi computers, it can also be possible to move the bed up and down to control for magnification or the camera can move and down using a servo driven 3D printed linear actuator.
